

Flzare 1. ${ }^{13} \mathrm{C}$ NMR spectra (90.56 MHz) of solutions of 3-S and 3-Se. The inset in spectrum F shows the ${ }^{71} \mathrm{Se}$ satellites of C-2 $\left(J_{\mathrm{Sec}}=85 \mathrm{~Hz}\right)$.

Figare 2. ${ }^{77} \mathrm{Se}$ NMR spectra (68.68 MHz) of solutions of 3-Se and 4-Se in 80% THF/ether (A-F) and THF/ether/HMPA (G). Chemical shifts are referenced to $\mathrm{Me}_{2} \mathrm{Se}$ in CDCl_{3} at $25^{\circ} \mathrm{C}$.
proportions of 4-Se at lower temperatures. The ${ }^{77} \mathrm{Se}$ spectrum broadened and decoalesced at $\approx-128^{\circ} \mathrm{C}$ (Figure 2E) to a broad signal at 447 ppm for $3-\mathrm{Se}$ and one at 406 ppm for 4 -Se. ${ }^{13}$ The sharp signal at 446 ppm is the protonation product of $3-\mathrm{Se}$. The spectra in Figure 2A-F and corresponding ${ }^{13} \mathrm{C}$ spectra (not shown) can be used to determine the temperature dependence of the 3-Se/4-Se equilibrium. A plot of ΔG° vs T gives $\Delta H^{\circ}=-2.5$ $\pm 1 \mathrm{kcal} / \mathrm{mol}, \Delta S^{\circ}=-14 \pm 5 \mathrm{eu}$. Equilibria between solventseparated and contact lithium ion pairs in ether solvents are temperature dependent, with lower temperatures favoring separated ions. ${ }^{14}$ Equilibria between aryllithium reagents (contact ions) and the ate complexes $\mathrm{Ph}_{2} \mathrm{ILi}$ and $\mathrm{Ph}_{3} \mathrm{TeLi}$ (separated ions in THF) also follow this pattern. ${ }^{\text {1c }}$ Figure 2G shows the spectrum of the ate complex 4-Se in THF/HMPA.

Smamary. The enormous rate acceleration of the intramolecular Li / S exchange $3-\mathrm{S} / \mathbf{3}^{\prime}-\mathrm{S}$ and the unusual stability of the selenium
(13) Upfield ${ }^{125} \mathrm{Te}$ and ${ }^{77} \mathrm{Se}$ shifts are found for the conversion of $\mathrm{Ph}_{2} \mathrm{Te}$ (688 ppm) to $\mathrm{Ph}_{3} \mathrm{TeLi}(327 \mathrm{ppm})$, ${ }^{\text {c, }, ~}$ and $\mathrm{Ph}_{2} \mathrm{Se}(402 \mathrm{ppm})$ to $\mathrm{Ph}_{4} \mathrm{Se}(373.7$ ppmen ${ }^{40}$ as well as their dibenzoselenophene analogs. ${ }^{40}$ However, the conversion $\mathrm{Ph}_{4} \mathrm{Te}(529 \mathrm{ppm})$ to $\mathrm{Ph}_{5} \mathrm{TeLi}(622 \mathrm{ppm})$ results in a downfield shift. ${ }^{16}$
(14) For the equilibration of lithium fluorenide contact and separated ion pairs in THF: $\Delta H^{\circ}=-7.5 \mathrm{kcal} / \mathrm{mol}$ and $\Delta S^{\circ}=-22 \mathrm{eu;} ;^{14 \mathrm{a}}$ for equilibration of $\mathrm{PhLi} / \mathrm{PhI}$ with $\mathrm{Ph} I \mathrm{ILi}, \Delta H^{\circ}=-9.9 \mathrm{kcal} / \mathrm{mol}$ and $\Delta S^{\circ}=-44 \mathrm{eu} .{ }^{1 \mathrm{c}}$ Rate studies for the $\mathrm{PhLi} / \mathrm{ArBr}$ exchange in ether $\left(\Delta H^{*}=14 \mathrm{kcal} / \mathrm{mol}, \Delta S^{*}=-24\right.$ $\mathrm{eu})^{14 \mathrm{~b}}$ and THF ($\left.223 \mathrm{~K}, \Delta H^{*}=9.5 \mathrm{kcal} / \mathrm{mol}, \Delta S^{*}=-30 \mathrm{eu}\right)^{18}$ show negative entropies of activation. (a) Hogen-Esch, T. E. Adv. Phys. Org. Chem. 1977, 15, 153. O'Brien, D. H.; Russell, C. R.; Hart, A. J. J. Am. Chem. Soc. 1979, 101, 633. (b) Winkler, H. J. S.; Winkler, H. J. Am. Chem. Soc. 1966, 88 , 964, 969. Rogers, H. R.; Houk, J. J. Am. Chem. Soc. 1982, 104, 522.
ate complex 4-Se suggest that the structure of 4 is close to the ideal geometry of such ate complexes, and provides support for the intermediacy of ate complexes in Li / S and $\mathrm{Li} / \mathrm{Se}$ exchanges.

Acknowledgment. We thank the National Science Foundation for support of this work.

X-ray Crystallographic and NMR Studies on the Origins of High Enantioselectivity in Diels-Alder Reactions Catalyzed by a Chiral Diazaaluminolidine

E. J. Corey* and Sepehr Sarshar

Department of Chemistry, Harvard University
Cambridge, Massachusetts 02138
Jon Bordner

Medical Research Laboratories, Pfizer, Inc. Groton, Connecticut 06340

Received July 8, 1992
The use of chiral aluminum-containing catalysts for enantioselective Diels-Alder reactions has recently been reported. ${ }^{1}$ For instance, the reaction of 5 -(benzyloxymethyl)-1,3-cyclopentadiene (1) and 3-acryloyl-1,3-oxazolidin-2-one (2), when catalyzed by the (S, S)-diazaaluminolidine 3 (ca. $10 \mathrm{~mol} \%$) at $-78^{\circ} \mathrm{C}$, produced after 18 h the adduct 4 in 93% yield and with ca. $97: 3$ enantioselectivity. ${ }^{2}$ This useful and interesting process has now been examined for mechanistic detail on the control of enantioselectivity within the catalytic transition-state assembly. We present herein X-ray crystallographic and NMR evidence for the basis of enantioselectivity in this system.

The structure of the chiral Diels-Alder catalyst in the crystalline state was determined by an X-ray diffraction study. The catalyst was prepared with rigorous exclusion of oxygen and moisture by the method used earlier, ${ }^{1,3}$ and crystals were grown from a methylene chloride-heptane bilayer at $23^{\circ} \mathrm{C}$. A crystal of size $0.21 \times 0.31 \times 0.35 \mathrm{~mm}$ was sealed in a glass capillary for X-ray analysis, which revealed that two units of the diazaaluminolidine system 3 are associated as shown in structure 5. ${ }^{4}$ In the dimer

[^0]

5

5 (TELP plot)
structure 5, the monomeric subunits are joined by Lewis acid-base association of a sulfonyl oxygen with aluminum to form an 8membered ring consisting of two $\mathrm{Al}-\mathrm{N}-\mathrm{S}-\mathrm{O}$ sequences joined head to tail. The $\mathrm{S}(1)-\mathrm{O}(2)$ and $\mathrm{S}(4)-\mathrm{O}\left(3^{\prime}\right)$ bond lengths (ca. 1.46 \AA) indicate extensive double-bond character for the $\mathrm{S}-\mathrm{O}$ bonds in the 8 -membered ring. The nitrogen atoms have sp^{2} geometry. The ${ }^{1} \mathrm{H}$ NMR spectrum of a solution of the catalyst in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $23^{\circ} \mathrm{C}$ is also consistent with the dimeric structure 5 ; two AlCH_{3} peaks appear at $\delta-0.32$ and -0.54 , and four benzylic $\mathrm{C}-\mathrm{H}$ peaks appear at $\delta 4.82,4.85,4.88$, and 5.24. The ${ }^{13} \mathrm{C}$ NMR spectrum in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ provides further support for the dimeric structure of 5 with benzylic carbon peaks at $\delta 72.2,67.7$, and 66.9 and four peaks for the attached aromatic (ipso) carbons at $\delta 138.5,139.9$, 140.4 , and 140.8 , as well as four different overlapping CF_{3} quartets. As indicated below, the addition of 1 equiv of dienophile 2 to the catalyst results in the total conversion to a new species as shown by the appearance of new NMR peaks due to a $1: 1$ complex of dienophile 2 and monomeric catalyst 3, the structure of which is indicated by the NMR data.

The dienophile 2 is monocoordinated to aluminum in the $1: 1$ complex at the acryloyl oxygen, as depicted in 6 and as revealed clearly by the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data listed (for $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ solution at $23^{\circ} \mathrm{C}$). Especially noteworthy are the downfield shifts on complexation for C_{1} and C_{3} and for H_{b} and H_{c} and the lack of the same for the oxazolidinone moiety. ${ }^{5}$

${ }^{1} \mathrm{H}$ NMR	(8 ; Hz)
2	6
$\mathrm{H}_{4} 7.45$	$\mathrm{Ha}_{\mathrm{a}} 7.74$
$\mathrm{H}_{\mathrm{b}} 5.87$	$\mathrm{H}_{6} 6.60$
$\mathrm{H}_{\mathrm{C}} 6.49$	$\mathrm{H}_{\mathrm{C}} 7.15$
$\mathrm{J}_{\mathrm{ab}}=8.6$	$\mathrm{J}_{\mathrm{ab}}=13.6$
$\mathrm{Jac}_{\mathrm{ac}}=15.2$	$\mathrm{J}_{\mathrm{ac}}=21.3$
$\mathrm{J}_{\mathrm{cc}}=1.8$	$\mathrm{Jbc}_{\mathrm{b}}<1$
$\mathrm{H}_{4} 4.03$	$\mathrm{H}_{4} 4.25$
$\mathrm{He}_{\mathrm{e}} 4.40$	$\mathrm{He}_{\text {e }} 4.38$

${ }^{13} \mathrm{C}$ NMR (8)	
2	6
$\mathrm{C}_{1} 165.1$	$\mathrm{C}_{1} 172.8$
$\mathrm{C}_{2} 153.8$	$\mathrm{C}_{2} 150.7$
$\mathrm{C}_{3} 131.4$	C3 144.3
C4 127.5	$\mathrm{C}_{4} 127.4$
Cs 42.9	Cs 44.3
$\mathrm{C}_{6} 62.7$	$\mathrm{C}_{6} 63.7$

In the ${ }^{1} \mathrm{H}$ NMR spectrum of the $1: 1$ complex $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 23^{\circ} \mathrm{C}\right)$ there is a single AlCH_{3} peak at $\delta-0.19$ and two benzylic CH peaks at $\delta 5.13$ and 4.76. In addition, there is a 5% positive NOE enhancement between the benzylic $\mathrm{H}_{\mathrm{f}}(\delta=4.76)$ and H_{a} of the acryloyl subunit. These data support the geometry shown in 6 for the $1: 1$ complex of 2 and 3 , which presumably is the reactive species in the catalyzed Diels-Alder process. The ${ }^{13} \mathrm{C}$ NMR data for the diazaaluminolidine moiety of the complex are consistent with this formulation; there are two benzylic carbon peaks ($\delta 68.7$ and 67.6), two peaks due to the attached aromatic carbons ($\delta 141.6$ and 140.9), and two overlapping quartets due to the CF_{3} carbons (center at $\delta 120$).
Expression 6 for the complex of catalyst and activated dienophile strongly suggests that the transition-state assembly for the formation of Diels-Alder adduct 4 is that shown in 7, which is uniquely consistent with the X-ray and NMR results and also the absolute configuration of the reaction product. Although the three-dimensional assembly 8 which was suggested earlier ${ }^{1}$ cannot be ruled out, it is out of harmony with the ${ }^{1} \mathrm{H}$ NOE data for 6 . In structure 7 it is necessary that the two $\mathrm{O}_{2} \mathrm{~S}-\mathrm{CF}_{3}$ bonds project away from the same face of the diazaaluminolidine ring to make room for the approaching diene. One of the phenyl substituents
(5) The carbonyl carbons in the $1: 1$ complex were assigned using coupled
$H \cdot{ }^{13}$ C NMR measurements. The acryloyl carbonyl (C_{1}) was identified by ${ }^{1} \mathrm{H} \cdot{ }^{13} \mathrm{C}$ NMR measurements. The acryloyl carbonyl $\left(\mathrm{C}_{1}\right)$ was identified by long-range couplings to the vinylic protons.
then plays the crucial role of shielding one face of the s-transacryloyl subunit from attack by the diene. A structure analogous to 7 is capable of explaining the enantioselective Diels-Alder addition of cyclopentadiene to menthyl acrylate under catalysis by $3 .{ }^{1.6}$

(6) This research was assisted financially by grants from the National Science Foundation and the National Institutes of Health.

Boron Analogs of Cyclopropenium Cation: $\mathrm{B}_{3} \mathbf{H}_{6}{ }^{+}$, the First Three-Membered Nonplanar 2π Aromatic

Eluvathingal D. Jemmis,* G. Subramanian, and G. Naga Srinivas

School of Chemistry, University of Hyderabad Central University P.O., Hyderabad 500134, India

Received March 26, 1992
The nonplanar structure of cyclobutadiene dication came as a revelation to chemists; 2π aromaticity no longer requires planarity. ${ }^{1}$ The neutral boron analog, 1,3 -diborocyclobutadiene, has been structurally characterized. ${ }^{2}$ The isoelectronic boron analogs of the cyclopropenyl cation, the smallest 2π aromatic ring, $1,{ }^{3}$ are $\mathrm{C}_{2} \mathrm{BH}_{3}\left(2, C_{2 v}\right),{ }^{4} \mathrm{CB}_{2} \mathrm{H}_{4}\left(3, C_{2 v}\right),{ }^{5} \mathrm{~B}_{3} \mathrm{H}_{5}\left(4, C_{2 v}\right),{ }^{6}$ and $\mathrm{B}_{3} \mathrm{H}_{6}+(5$, $D_{3 h}$). We present here theoretical results to show that 2-4 are indeed planar and aromatic but 5 represents a transition state. A nonplanar aromatic structure ($6, C_{30}$) is found to be a minimum. There are interesting implications to this observation in areas as different as polylithium compounds and metallaboranes. Isomers of 1-5 which lie close in energy are also studied here.

Ab initio MO theory at the $6-31 \mathrm{G}^{*},{ }^{7}$ MP2/6-31G*, ${ }^{8}$ and QCISD(T)/6-31G*9 levels is used in this study. ${ }^{10}$ Unless oth-
(1) (a) Krogh-Jesperson, K.; Schleyer, P. v. R.; Pople, J. A.; Cremer, D. J. Am. Chem. Soc. 1978, 100, 4301. (b) Chandrasekhar, J.; Schleyer, P. v. R.; Krogh-Jesperson, K. J. Comput. Chem. 1981, 2, 356.
(2) (a) Krogh-Jesperson, K.; Cremer, D.; Dill, J. D.; Pople, J. A.; Schleyer, P. v. R. J. Am. Chem. Soc. 1981, 103, 2589. (b) Schleyer, P. v. R.; Budzelaar, P. H. M.; Cremer, D.; Kraka, K. Angew. Chem., Int. Ed. Engl. 1984, 23, 374. (c) Hildenbrand, M.; Pritzkow, H.; Zenneck, U.; Siebert, W. Angew. Chem., Int. Ed. Engl. 1984, 23, 371. (d) van der Kerk, G. J. M.; Budzelaar, P. H. M.; van der Kerk-van Hoof, A.; Schleyer, P. v. R. Angew. Chem., Int. Ed. Engl. 1983, 22, 48.
(3) (a) Rosenstock, H. M.; Draxl, K.; Stiener, B. W.; Herron, J. T. J. Phys. Chem. Ref. Data, Suppl. 1977, 6. (b) Wong, M. W.; Radom, L. J. Am. Chem. Soc. 1989, 1II, 6976. (c) Friedrich, E. C. The Chemistry of the Cyclopropyl Group; Rappoport, Z., Ed.; Wiley: New York, 1987 and reviews cited therein.
(4) (a) Budzelaar, P. H. M.; Kos, A. J.; Clark, T.; Schleyer, P. v. R. Organometallics 1985, 4, 429. (b) Volpin, M. E.; Koreskov, Y. D.; Dulova, V. G.; Kursanov, D. N. Tetrahedron 1962, 18, 107.
(5) (a) Collins, J. B.; Dill, J. D.; Jemmis, E. D.; Apeloig, Y.; Schleyer, P. v. R.; Seeger, R.; Pople, J. A. J. Am. Chem. Soc. 1976, 98, 5419. (b) Krogh-Jesperson, K.; Cremer, D.; Poppinger, D.; Pople, J. A.; Schleyer, P. v. R.; Chandrasekhar, J. J. Am. Chem. Soc. 1979, 101, 4843. (c) Farras, J.; Olivella, S.; Sole, A.; Vilarrasa, J. J. Comput. Chem. 1986, 7, 428.
(6) Bigot, B.; Lequan, R. M.; Devaquet, A. Nouv. J. Chim. 1978, 2, 449.
(7) Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta 1971, $28,213$. (8) (a) Moller, C.; Plesset, M. S. Phys. Rev. 1934, 46, 618. (b) Pople, J. A.; Binkley, J. S.; Seeger, R. Int. J. Quantum Chem., Symp. 1976, No. 10, 1.
(9) Pople, J. A.; Head-Gordon, M.; Raghavachari, K. J. Chem. Phys. 1987, 87, 5968.

[^0]: (1) (a) Corey, E. J.; Imwinkelried, R.; Pikul, S.; Xiang, X. B. J. Am. Chem. Soc. 1989, 111 , 5493-5495. (b) Corey, E. J.; Imai, N.; Pikul, S. Tetrahedron Lett. 1991, 32, 7517-7520.
 (2) For a review of this and other applications of chiral 1,2-diphenyl-1,2-diaminoethane-derived reagents, see: Corey, E. J. Pure Appl. Chem. 1990, 62, 1209-1216.
 (3) For details of the preparation of the catalyst and its use in a DielsAlder reaction, see: Pikul, S.; Corey, E. J. Org. Synth., in press. A flamedried, $250-\mathrm{mL}$, three-necked flask equipped with a magnetic stirring bar and a reflux condenser was charged with $1.31 \mathrm{~g}(2.75 \mathrm{mmol})$ of the bistriflamide of (S, S)-1,2-diphenyl-1,2-diaminoethane (dried at $80^{\circ} \mathrm{C}$ and 1 mmHg) and placed under dry argon. 1,2-Dichloroethane (20 mL) was added, and the mixture was heated to $80^{\circ} \mathrm{C}$ with stirring to effect solution, cooled to ambient temperature, and treated dropwise with $1.37 \mathrm{~mL}(2.74 \mathrm{mmol})$ of 2 M trimethylaluminum in toluene. After the evolution of gases ceased, the homogeneous mixture was heated to $80^{\circ} \mathrm{C}$ (oil bath) for 3 h . The mixture was cooled to ambient temperature, and the solvent was removed under vacuum, which was maintained for an additional 30 min . The resulting solid was dissolved in 10 mL of dry methylene chloride and overlayered with 50 mL of dry heptane. Colorless, clear crystals of catalyst were deposited after 20 h . The supernatant was drawn off by syringe. Since trimethylaluminum can also catalyze Diels-Alder reactions of 2 with dienes, it is essential that this and other Lewis acids be removed from catalyst 3.
 (4) Detailed X-ray crystallographic data are available from the Cambridge Crystallographic Data Center, 12 Union Road, Cambridge, CB2 1EZ, U.K. Data for empirical formula $\mathrm{Al}_{2} \mathrm{C}_{3} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{~S}_{4} \mathrm{~F}_{12}$ (1032.9): space group $P 2_{1}$, $a=10.798$ (5) $\AA, b=16.264$ (9) $A, c=12.406$ (7) $\AA, \alpha=90.00^{\circ}, \beta=92.87$ (4) ${ }^{\circ}, \gamma=90.00^{\circ}, V=2176$ (2) $\AA^{3}, 2$ molecules per unit cell, $d=1.58 \mathrm{~g} / \mathrm{cm}^{3}$; Mo $\mathbf{K} \alpha$ radiation ($23^{\circ} \mathrm{C}$); 2341 reflections obtained (1643 with $I>3 \sigma$), R index $=0.069 ; G O F=1.04$.

